# 電子迴旋脈射 — 課題簡介及個人之旅

## 清華大學物理系 朱國瑞

## 一、課題簡介

早期的真空電子學,研創出磁控管(magnetron), 速調管(klystron)及行波管(traveling wave tube,簡稱 TWT)等微波源。這些成果與我們今天的日常生 活、科學研究,以至戰爭的勝負都息息相關。1960 年代以後,傳統微波管已趨成熟,取而代之的是一 門新興科目:相對論電子學(relativistic electronics), 它的兩大支柱為「自由電子雷射(free electron laser)」 和「電子迴旋脈射(electron cyclotron maser,簡稱 ECM)」,二者均利用相對論效應,將自由電子的動 能轉換為更高頻率及功率的電磁波。

傳統微波管研究,固然用到了極高深的電磁理 論,其最後銓釋,往往只需簡單的流體方程式及電 路學。在「相對論電子學」的研究工作上,由於電 子流及電磁波輻射強度大幅提昇,相互作用之自洽 效應(self-consistency)不可勿視,而電子分佈函數 (distribution function)的影響也極為重要。另外,所 討論的各種機制,均與相對論效應相關。因此, relativistic Vlasov equation 和 Maxwell equations 之自 洽組合構成嚴謹分析的起始點。為了解決種種衍生 的非線性問題(例如 mode competition),電腦模擬常 被用來輔助理論及實驗研究。從學理言,相對論電 子學歸屬於離子體科學(plasma science)領域。

ECM 的運作,首先經由電子發射器(通稱 electron gun),在靜磁場  $B_0$ 中產生以頻率 $\Omega_0$ 迴旋之 高能量電子(數十至數百 keV),其中 $\Omega_0$ 之相對論公 式為 $\Omega_0 = eB_0/(\gamma mc)$ ,式中之 m 為電子之靜止質 量, $\gamma$ 為其相對論因子。圖一所示為一圈在同一迴 旋軌道上運行,並成均勻分佈的電子。起始時,各 電子之能量( $\gamma$ )相同,其迴旋頻率( $\Omega_0$ )亦相同,故 能維持均勻分佈,而無輻射產生。假設此時外加一 圓極化電磁波(圖一箭頭所示為其瞬間電場方 向),以 $\omega$ 頻率與電子幾近同步旋轉,則上半圈之 電子將被加速,其 $\gamma$ 增大, $\Omega_0$ 變大。因此,各電 子之迴旋角速度開始相異,電子漸漸由均勻分佈, 變為不均勻分佈(通稱群聚),電子流亦由起始時之 直流形態,獲得具有輻射能力的交流成份。由於電 磁波頻率和電子迴旋頻率相近, $\omega \cong \Omega_{\circ}$  (cyclotron resonance),此群聚機制可以持續許多迴旋週期,使 電子流中之交流成份不斷增加,因而大大助長 (amplify)外加電磁波的強度。上述輻射現象起源於 外加電磁波之激發,故為 stimulated emission,和 laser 相較,可謂異曲同工,所以有 electron cyclotron maser 之名。有趣的是,這種基於相對論效應的群 聚機制,只與電子γ値之變化有關,而並不取決於 其絕對値。因此在電子動能只有幾個 keV 時 (γ~1.01),效應就很明顯。由此機制所演變出的各 種輻射裝置,通稱迴旋管(gyrotron)。



圖一、ECM輻射原理示意圖

同調(coherent)電磁波源,大致區分為量子及古 典兩類型,分別以雷射及前述傳統微波管為代表。 雷射中的原子或分子受激發後,只能放出一個特定 頻率的光子,因此所能產生的功率隨著光子能量 (或輻射頻率)的減小而降低。反之,微波管中的每 個自由電子,可以發射大量光子。但微波管所使用 的基本模(fundamental mode)作用結構大小和波長 相近,以致作用結構(或波長)減小時,受到散熱不 易及高壓放電等限制,所能承受的功率隨著降低。 兩類型波源功率降低的相反趨勢,幸運地使得電磁 波頻譜的光波及微波段,都有高功率波源,但是在 接壤的毫米及次毫米波段,功率難以提昇,因此波 源功率圖上(圖二),出現了一個「缺口」。



圖二、電磁波源功率圖

ECM 具有自由電子大量發射光子的優點,同時也因為電子在磁場中的迴旋具有特定頻率 $\Omega$ 。 (有如原子能階間所產生的特定輻射頻率),而可以 使用較大的作用結構,藉共振效應激發頻率 $\omega \cong \Omega$ 。的高次模(high order mode)。大量發射光子及大 作用結構的組合,使 ECM 恰能填補圖二的缺口。 ECM 輻射機制的本身,構成有趣的原理研究。所 產生的毫米及次毫米波,亦可在 fusion plasma heating, advanced radars, industrial processing, materials characterization, particle acceleration,以及 space object probing 等方面,開拓出新的應用研究。原理與應 用的結合,使得 ECM 在歷時四十年的鑽研後,仍 然持續地蓬勃發展。

## 二、個人之旅

本人很榮幸藉此機會報告個人參加 ECM 研究 的些許經驗。1970 年代,由於前蘇聯正在從事機 密的 ECM 研究,美國 Naval Research Laboratory (NRL) 也組成了一個 ECM 研究小組,相關理論工 作,係由本人負責。當時的文獻,偏重工程,從物 理角度窺視,仍然存在著廣闊的空間。一開始有幸 和耶魯大學的 Hirshfield 教授合作,首次以 plasma instability 觀點,探討 ECM 中兩種群聚機制的相互 關係[1],澄清了一個長久以來懸而未決的快波及慢 波激發機制問題。此文及另一篇探討諧波機制的論 文[2]較具基礎性,後來經常被 ECM 研究人員作為 理論參考。在 NRL 十一年的工作期間,也參與了 幾項發明。其中 gyrotron traveling wave amplifier (gyro-TWT)成為本人 1983 年回清華後所從事的主 要研究。

回國之初,仍以理論研究爲主。一年下來,完

成了 fully relativistic gyroklystron 理論,用以探討超 高功率輻射機制。由於它在加速器方面的應用潛 力,1985 年暑假,應邀前往馬利蘭大學主持 gyroklystron 研究,構思出一個功率超越 state-of-the-art 近百倍的實驗設計[3],以作為 Next Linear Collider 的加速波源。該構思獲得美國能源部 支持迄今,成為馬大的一個大型計畫。1991 年, 馬大的實驗[4],印証了預期結果,獲得國際重視, 之後衍生出 NRL 的高解析度雷達計畫。去年, CERN 亦採用該構思,委託工業界研發超高功率毫 米波發射系統,為籌建下一代粒子加速器鋪路。



圖三、清大高頻電磁實驗室



圖四、毫米波診斷系統

應用研究,若全靠理論,在國內不易發展,因 此動了作實驗的念頭。在淸華的前兩年,經常利用 寒暑假到 UCLA 參加 Luhmann 教授的研究團隊, 和他的研究生一起學習實驗。第三年,在 NRL 老 同事 Barnett 博士的協助及國科會支助下,於物理 系建立了「高頻電磁實驗室」(圖三、四),師生頓 時有了海闊天空的感覺。我們對 ECM 中的模式競 爭等錯綜複雜現象,作了深入的探究。從理論體系的建構開始[5,6],繼而設計及製造特殊儀器,進行了一系列的創新性實驗觀測[7-9]。1998年,經由學生們多年的接力奮鬥,完成了一個 Ka 頻段gyro-TWT 實驗[10],其功率(93 kW)、增益(70 dB)、頻寬(8.6%)及效率(26.5%)均超越屹立三十餘年的國際記錄,提供了開發遠距離,高解析度雷達系統的關鍵技術。此方案已獲得 NRL 的重視,正據以發展新一代的雷達射頻系統。清大的研究結果,亦相繼導至美、歐及亞洲六、七個其他研究機構開展gyro-TWT 研究。

最近,我們和高速電腦中心及國家理論中心同 仁,一起探討迴旋返波振盪的動力行為。從理論發 現[11],並以實驗印証[12],振盪波形具有非線性 收縮的特性,因而獲致與傳統認知完全迴異的幾項 結論,提供了一個新的物理角度來透視相關問題, 在期刊[13,14]及國際會議中,引起了廣泛的討論。 我們已將它列為國科會新核定計畫中的一項重點 研究。

## 三、結語

這段 ECM 之旅,不知不覺間,已歷時廿五年, 仍感意猶未盡。高興的是,大部份的階段性任務, 都在台灣完成。過程中,培養了很多優秀學生,投 入國內科技行列,貢獻所長。例如同步輻射研究中 心高頻小組的原始成員,都是本實驗室所培育,大 家合力完成了該設施的高頻系統。國內微波管工業 的技術人才亦大都來自本實驗室,目前正與我們攜 手研發寬頻衛星通訊及高解析度雷達的核心組 件:毫米波射頻系統。礙於篇幅限制,本文未能呈 現同行學者的傑出成果。ECM 研究全貌,將在一 篇題爲"The Electron Cyclotron Maser"的 review 論文 中細述[15]。

- K. R. Chu and J. L. Hirshfield, Phys. of Fluids 21, 461 (1978).
- [2] K. R. Chu, Phys. of Fluids 21, 2354 (1978).
- [3] K. R. Chu, V. L. Granatstein, P. E. Latham, W. Lawson, and C. D. Striffier, IEEE Trans. Plasma Sci. 13, 424 (1985).
- [4] W. Lawson, J. P. Calame, B. Hogan, P. E. Latham, M. E. Read, V. L. Granatstein, M. Reiser, and C. D. Striffler, Phys. Rev. Lett. 67, 520 (1991).
- [5] K. R. Chu and A.T. Lin, IEEE Trans. Plasma Science PS-16, 90 (1988).
- [6] K. R. Chu, H. Guo, and V. L. Granatstein, Phys. Rev. Lett. 78, 4661 (1997).
- [7] L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu,
  W. K. Lau and C. C. Tu, Phys. Rev. Lett. 63, 1062 (1989).
- [8] C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, Phys. Rev. Lett. 70, 924 (1993).
- [9] K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, Phys. Rev. Lett. 74, 1103 (1995).
- [10] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L.R. Barnett, S. H. Chen, and T. T. Yang, Phys. Rev. Lett. 81, 4760 (1998).
- [11] S. H. Chen, K. R. Chu, and T. H. Chang, Phys. Rev. Lett. 85, 2633 (2000).
- [12] T. H. Chang, S. H. Chen, L. R. Barnett, and K. R. Chu, Phys. Rev. Lett. 87, 064802 (2001).
- [13] G. S. Nusinovich, A. N. Vlasov, and T. M. Antonsen, Phys. Rev. Lett. 87, 218301 (2001).
- [14] S. H. Chen, K. F. Pao, T. H. Chang, and K. R. Chu, Phys. Rev. Lett. (submitted, 2002).
- [15] K. R. Chu, invited review, Rev. Modern Phys. (to appear in 2003).