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Elementary electronic excitations in one-dimensional continuum and lattice systems
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We systematically investigate the mode dispersion and spectral weight of the elementary excitation spectra
in one-dimensional continuum and lattice electron systems by using the RPA, the Luttinger liquid model, and
the Hubbard model. Both charge and spin excitations are studied in detail and compared among the theoretical
models. For the lattice Hubbard model we use both Bethe-ansatz equations and Lanczos-Gagliano method to
calculate dispersion and spectral weight separately. We discuss the theoretically calculated elementary excita-
tion spectra in terms of the experimental inelastic light~Raman! scattering spectroscopy of one-dimensional
~1D! semiconductor quantum wire systems. Our results show that in the polarized~i.e., non-spin-flip! Raman-
scattering spectroscopy, only the 1D charge density excitations should show up with observable spectral weight
with the single-particle excitations~in random-phase approximation! or singlet spin excitations~in the Lut-
tinger model and the Hubbard model! having negligible spectral weight. The depolarized~spin-flip! Raman-
scattering spectra manifest the spin density or the triplet spin excitations. We also provide a qualitative
comparison between the continuum and the lattice 1D elementary excitation spectra.

DOI: 10.1103/PhysRevB.65.035103 PACS number~s!: 71.10.Fd, 71.15.2m, 78.30.Fs, 78.35.1c
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I. INTRODUCTION

The goal of this paper is to investigate theoretically t
charge and spin elementary excitation spectra as well as
spectral weights in one-dimensional~1D! electron
systems,1–3 both for a continuum jellium electron gas and f
an atomic lattice model. Our calculations~in particular, our
spectral weight calculations! should apply to the experimen
tal Raman-scattering data4–6 if the resonance effects are dy
namically unimportant in the interpretation of the Ram
experiments. We refer to our calculations as the nonreso
Raman scattering~NRS! theory where only the conduction
band electrons are taken into account as opposed to the
nant Raman scattering where both the conduction band
the valence band participate. In fact, the theory develope
this paper has been the standard theory for discussing
resonant Raman-scattering spectroscopy until very rece
when several publications7–9 dealing with the full subtleties
of the resonance effect have appeared in the literature.
emphasize that, quite apart from the resonant Ram
scattering spectroscopy, theoretical results presented in
paper stand on its own as a comprehensive theory for
elementary excitation spectra of 1D electron systems.

In this paper, we will study the standard~nonresonant!
Raman-scattering spectroscopy in three theoretical mod
the random-phase-approximation~RPA! Fermi-liquid model,
the Luttinger liquid~LL ! model, and the 1D Hubbard mode
As emphasized above, by ‘‘nonresonant’’ we mean that
theory neglects all effects of the valence band in reson
Raman scattering~which is a two-step process, with the in
cident photon being absorbed by a valence-band elec
which thereby gets excited into an excited conduction-b
state with an electron from inside the conduction-band Fe
surface subsequently combining with the valence-band h
with the emission of the scattered photon!. If the valence
band can be ignored, then only conduction-band density fl
tuations are responsible in the linear response theory of
scattering process. The calculation is then simplified to
0163-1829/2001/65~3!/035103~14!/$20.00 65 0351
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evaluation of the density-density correlation function~for po-
larized spectrum! and the spin-density correlation functio
~for depolarized spectrum!, whose imaginary parts are pro
portional to the spectra measured in the experiments. T
approach of identifying the measured elementary excita
spectra in the Raman-scattering experiments as the ch
~polarized spectra! or the spin-~depolarized! density correla-
tion function of the electron system in the conduction ba
has a long and fairly successful history10 in the semiconduc-
tor structures. We take the same approach here, and cons
our charge and spin-density correlation functions~which
give the spectral strengths of the elementary excitati
through their imaginary parts or the corresponding dyna
cal structure factors! entirely from the conduction-band ca
riers, ignoring all effects of the valence band in the res
nance process.

There has been one persistent feature in the experime
Raman spectra of semiconductor systems, including
QWR structures, which does not seem to have an obvi
explanation in terms of the nonresonant theory discusse
this paper. There is often a low-energy spectral peak in
polarized spectra at an energy well below the expected
lective charge-density excitation~CDE! peak ~and in addi-
tion to the charge-density excitation peak, which alwa
shows up at the usual energy!. This additional peak occurs
around the single-particle excitation energy, which typica
contributes little to the dynamical structure factor~i.e., the
density correlation function! at the low wave vectors (q
!kF) of Raman-scattering experiment, and therefore sho
have negligible~unobservable! spectral weight. There hav
been many suggestions for the resolution of this puz
~namely, why the single-particle excitation weight is e
hanced in the density correlation spectrum!, and we will
quantitatively consider several of these suggestions in
paper. Our conclusion, based on the results presented in
paper, is that this puzzle in all likelihood arises necessa
from the resonant nature of Raman-scattering experime
as has recently been argued in the literature,7–9 which is be-
©2001 The American Physical Society03-1
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D. W. WANG AND S. DAS SARMA PHYSICAL REVIEW B65 035103
yond the scope of this paper. Our critical quantitative co
sideration of the several suggested scenarios~within the non-
resonant theory of using conduction-band properties o!
for explaining why the single-particle excitation has lar
spectral weight shows that none of them is capable of res
ing this problem quantitatively. While studying the 1D e
ementary excitation spectra is the primary goal of this pa
considering the single-particle excitation spectral weight
sue in the nonresonant Raman scattering is one of our im
tant secondary goals.

We first present the results of the Fermi-liquid rando
phase-approximation~RPA! calculation for this problem in
Sec. II. The RPA calculation has been shown to give a g
description11 for the dispersion relations of the elementa
excitations in comparison with the experimental results,4 for
both intersubband and intrasubband 1D excitations.12 Being
a standard Fermi liquid~FL! theory, however, the RPA cal
culation is unable to explain the relatively large spect
weight of the ‘‘single-particle excitation’’~SPE! in the polar-
ized spectrum of the experiment as discussed above. W
clude the effects of the breakdown of momentum conse
tion and the nonparabolic energy dispersion in o
calculation to check if they can explain the SPE feat
within RPA, but neither gives qualitatively correct results f
the polarized spectrum. In the Luttinger liquid model w
present in Sec. III, we findzeroweight at the SPE energy~as
we should, since in the LL model there are no single-partic
like quasiparticle excitations!, and all the spectral strength
at the charge boson mode, which is exactly the CDE mod
RPA. In Sec. IV, we use the 1D~lattice! Hubbard model with
repulsive on-site spin-dependent interaction to study
problem. The study of 1D elementary excitations and
associated spectral weights in the Hubbard model is on
our main results in this paper. This Hubbard model study w
originally motivated by the suggestion in Ref. 13 that a p
sible way to interpret this SPE puzzle~the existence of a
single-particle peak in Raman scattering! in 1D should be
different from those in higher dimensions, and the so-ca
SPE peak may be arising from the spin-singlet excitati
~SSE! of interacting 1D systems.13,14Therefore we choose to
study in detail the 1D Hubbard model, in which the sp
dependent interaction is expected to enhance the contribu
of the spin-singlet excitation, which is proposed13,14 as the
extra SPE-like feature showing up in the experiment.
though the Hubbard model is a lattice model and con
quently may not apply directly to the continuum QWR sy
tem, we argue that it is useful to understand the deta
excitation spectra in the 1D Hubbard model in the contex
this problem because one can quantitatively study the in
acting 1D elementary excitation spectra using the Hubb
model.

II. FERMI-LIQUID MODEL

The Fermi-liquid calculation of the elementary excitati
spectrum of an electron system has been extensively
cussed in the literature.3,10–12,15,16We use two standard ap
proximations: RPA and the Hubbard approximation.15–17We
refer the reader to the existing literature3,10–12,15–17for details
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on RPA and the Hubbard approximation~HA! except to note
here that in RPA one uses the noninteracting electron po
izability function ~Fig. 1! for the irreducible response func
tion and in the HA one includes an approximate local-fie
correctionG(q) to crudely incorporate the exchange vert
correlations. We use the following simple form for the 1
Hubbard local-field correction:

G~q!5
1

2

Vc~Aq21kF
2 !

Vc~q!
, ~1!

whereVc(q) is the 1D Coulomb interaction andkF is the 1D
Fermi wave vector. In the long-wavelength limit,q→0,
G(q)→0 for Coulomb interaction and the RPA result is r
stored in the long-wavelength limit as it must. In Fig. 2 w
plot the dispersion and spectrum of the 1D charge den
collective excitation~usually called the 1D plasmon mode!
within both the RPA and the Hubbard approximation—t
plasmon mode is defined by the zero of the dielectric fu
tion and the intensity or the spectral weight is given by t
imaginary part of the dielectric function~i.e., the dynamical
structure factor15!. In Fig. 2~a!, we find that the plasmon
energy is actually larger than the SPE continuum energy
all momentum, so that there is no Landau damping in the
system within the RPA calculation. The 1D plasma disp
sion has no gap in the long-wavelength limit, but an infin
slope atq50 due to the logarithmic divergence of the 1
Coulomb interaction.

In Fig. 2~b!, we also show the typical calculated polarize
RRS spectrum using a phenomenological broadening fac
g50.05EF , which may be arising from impurity scattering
We find that the spectral weight of CDE is much larger th
that of SPE~about one thousand times!!. In the same figure
we show the HA results as well. We find that while the vert
correction indeed increases the SPE weight somewhat
tive to the CDE weight, the HA is still completely unable~by
a factor of 100! to explain the experimental finding4 of the
SPE mode being comparable in the intensity to the C
mode ~double peak structure! in the polarized RRS
spectrum.4 Moreover, if the electron energy dispersion is li
ear ~as it is close to the Fermi point!, the SPE excitation
spectral weight disappears. This indicates that the band
vature aroundkF plays an important role in forming the SP
peak in the experiments. For example, in the linearized

FIG. 1. Diagrammatic representation of the conduction-band
reducible polarizability P0(q,v) and reducible polarizability
P(q,v) in standard RPA calculation.Vc(q) is the Coulomb inter-
action.
3-2
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ELEMENTARY ELECTRONIC EXCITATIONS IN ONE- . . . PHYSICAL REVIEW B 65 035103
theory the SPE will have exactly zero spectral weight. Bel
we consider the band nonparabolicity effect explicitly.

In discussing the spin-desity excitation~SDE! spectrum in
the depolarized goemetry we note that the depolarized s
trum of 1D electron systems in the RPA is just the imagin
part of the noninteracting polarizability function (ImP0)
which is the same as the SPE in the polarized spectrum. T
within RPA the depolarized mode dispersion is identical
the SPE energy, i.e.,v5qvF with a q2 broadening. One
should note, however, that when vertex corrections such a
the Hubbard approximation are taken into account, the sp
tra of the SDE will not be exactly the same as the SPE du
the vertex correction induced energy shift. In Fig. 3 we sh
the SDE spectrum obtained by calculating the spin-den
correlation function in RPA and also in the Hubbard appro
mation. The vertex correction shifts the SDE peak to low
energy~an excitonic shift! in the HA and thus separates
from the SPE mode.

Beyond the standard RPA calculation, we include t
nongeneric effects, the breakdown of momentum conse
tion ~arising from impurity scattering, for example! and the
nonparabolicity of electron energy dispersion, because b
of these corrections are likely to transfer some large wa
vector SPE weight to smaller wave vector. For the bre

FIG. 2. ~a! The energy-momentum dispersion relation for t
plasmon mode and the SPE region of 1D system.~b! The dynamical
structure factor of the polarized RRS spectrum in RPA calcula
for the 1D quantum wire system atq50.1kF . Vertex correction in
Hubbard approximation is also shown for comparison. Parame
are the same as the experiments in Ref. 4. Finite broadening fa
is involved to present the delta-function peaks.
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down of momentum conservation, we use a phenomenol
cal approach18 by introducing a broadening function tha
couples the polarized spectrumxr(q,v) at momentumq to
that at momentumq8:

xr~q,v;G!;
GkF

p E dq8
xr~q8,v!

~q2q8!21G2kF
2

, ~2!

whereG is a~phenomenological! dimensionless factor denot
ing the strength of the breakdown of momentum conser
tion. For G→0 we get back the original spectrum. In Fi
4~a!, we show the numerical calculation results of this effe
by applying Eq.~2! onto the RPA result. At first sight, on
finds that finiteG does decrease the peak value of CDE a
enhance the SPE weight. ForG.0.5, however, we find tha
the SPE peak merges into the very broad CDE peak, whic
broadened also by the breakdown of momentum conse
tion. In other words, the breakdown of momentum conser
tion reduces the CDE peak strength and also broaden
width without changing either the total CDE spectral weig
or the SPE weight qualitatively. Therefore, in our direct n
merical calculation, we show that the breakdown of mom
tum conservation is not the candidate mechanism to prov
an SPE spectral weight comparable to the CDE weigh
RPA calculations.

We now discuss the same issue by considering the b
nonparabolicity effect of the electron energy dispersion.
recalculate the RPA spectral weight including band nonpa
bolicity via an additionalq4 term in the electron energy
dispersion,19

E~q;l!

EF
5S q

kF
D 2

1lF S q

kF
D 4

2S q

kF
D 2G . ~3!

This expression ofE(q;l) keeps the Fermi energy consta
@E(kF ;l)5EF# for all l and changes the electron effectiv
massme(l)5m/(12l) consistently. In Fig. 4~b!, we show
the calculated polarized RRS spectrum for different values
l<0.1. We find that the enhancement of the SPE weigh
very small, while the CDE peak almost keeps the sa
weight. Using largerl will cause greater blue shifts in bot
SPE and CDE energies due to the increase of Fermi velo

n

rs
tor

FIG. 3. The dynamical structure factor of the depolarized R
spectrum calculated from ImP0,s

RPA(q,v) within RPA and Hubbard
approximation.
3-3
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D. W. WANG AND S. DAS SARMA PHYSICAL REVIEW B65 035103
which disagrees with the experimental results~note that the
standard RPA results provide very good agreement with
experimental results in the excitation energies4!. Therefore
the nonparabolicity effect cannot enhance the SPE spe
weight to be comparable to the CDE weight.

III. LUTTINGER LIQUID MODEL

The Luttinger liquid model1,2,14 is thought to provide a
generic low-energy description for 1D electron system
which are characterized by the LL fixed point in the ren
malization group sense. The standard and exactly solv
LL model is the 1D electron gas with a linear dispersi
@E(k)5rvF(k2rkF)# around Fermi points (6kF) at each
branch (r 561) and with short-ranged forwar
interaction.1,2 Using bosonization method and a linear tran
formation, the LL Hamiltonian can be exactly diagonaliz
by the two boson operators: charge bosonr r(p) and spin
bosons r(p). This fact makes the collective excitation spe
tra ~CDE and SDE! in the Luttinger model very simple: bot
the charge~CDE! and the spin~SDE! modes are delta func
tion like poles and there is no SPE mode or equivalen
quasiparticle spectral weight, at all. Using the stand

FIG. 4. The dynamical structure factor of the polarized R
spectrum calculated by including~a! the breakdown of momentum
conservation and~b! the nonparabolic energy dispersion. The d
dashed, and solid lines in~a! represent the broadening parame
G50, 1023, and 431023, respectively@see Eq.~2!#, and in ~b!
represent the nonparabolicity parameterl50, 0.02, and 0.1, re-
spectively@see Eq.~3!#. All these effects cannot enhance the SP
spectral weight to be comparable to CDE in the reasonable rang
G or l.
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Bosonization method, we got for the charge (r) and the spin
(s) sector response functions:

xr~q,v!5
2L

p

Kr~q!vr~q!q2

~v1 id!22~vq
r!2

, ~4!

xs~q,v!5
2L

p

Ks~q!vs~q!q2

~v1 id!22~vq
s!2

, ~5!

where the excitation energy, vq
r/s5uquvr/s(q)

5uquvF /Kr/s(q), and the charge sector Luttinger expone
Kr(q) is

Kr~q!5S 11
2Vc~q!

pvF
D 21/2

, ~6!

while Ks(q)51 in the spin sector for the spin-independe
Coulomb interaction.

It is clear that the above results are completely sp
charge separated, which is another important feature of
LL model. One should note that there is no spectral weigh
xr(q,v) at v5qvF for any SPE mode~or, for that matter
any mode!. This shows that the small SPE peak~compared to
CDE! in the Fermi-liquid RPA theory is totally absent in th
LL theory. Thus any possible explanation within the L
theory for the anomalous low-energy peak in the polariz
RRS spectra must arise from some mode~e.g., a multiboson
mode or an SSE mode! other than the SPE mode which
completely absent in the LL theory.

We note one other aspect~the spin-charge separation me
tioned above! of the LL theory in this context which ha
created some minor confusion. The spin-charge separatio
the LL theory has nothing whatsoever to do with the sepa
existence of SDE/CDE in the depolarized/polarized R
spectra. The collective spin- and charge-density excitati
are completely distinct excitations in the FL theory as well
they are the poles of the appropriate spin~for SDE! and
charge ~CDE! density correlation functions of the syste
which have totally different energies and selection rules~i.e.,
whether there is a spin flip or not! in any reasonable theory
The reason spin-charge separation is rather complete in
LL theory is because the Luttinger liquid does not have a
quasiparticles or single-particle excitations—it has only c
lective spin and charge excitations which are poles of diff
ent correlation functions and are always separate. Ind
higher dimensional systems, such as 2D and 3D GaAs st
tures, exhibit qualitatively similar RRS spectra as in the
system with the CDE peak~and a weak SPE-like low energ
feature! showing up in the polarized spectra and the SD
peak showing up in the~spin-flip! depolarized RRS spectra
These higher dimensional systems are obviously Fermi
uids and have no LL-like intrinsic spin-charge separat
while at the same time having distinct CDE and SDE colle
tive modes.

Unlike the formulas for the single-particle Green’s fun
tion, in which the non-Fermi-liquid-like Luttinger liquid fea
ture arises from the nonperturbative power-law behavior

,
r

of
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ELEMENTARY ELECTRONIC EXCITATIONS IN ONE- . . . PHYSICAL REVIEW B 65 035103
gether with the velocity renormalization, the charge- a
spin-density correlation functions~which are two-particle
Green’s functions! have no such power-law behavior at a
The density correlation functions and the the associa
charge-/spin-density excitation collective mode spectra
essentially identical in the LL and the FL-RPA model3,11 ex-
cept for the complete absence of any SPE spectral weigh
the charge sector in the LL model. The Luttinger liquid e
fects appear only in the mode velocity renormalizationvr(q)
and the overall-mode amplitude factorsKr(q) in the
collective-mode spectra.

The diagrammatic method for the Luttinger liquid theo
tells us more about the transition from the Fermi liquid to t
Luttinger liquid, because it is physically more transpare
than the Bosonization technique, which is more of a form
mathematical tool. Early seminal work by Dzyaloshinkii a
Larkin20 and recent important work of Schultz21 have shown
that this method is equivalent to the Bosonization theo
even though its theoretical structure follows a Fermi-liqu
type conventional many-body theory.

In order to evaluate the irreducible polarizability, we u
the Ward identity connecting the Green’s function with t
vertex function in the following formula:

G rs~p,n,q,v!5
Grs

21~p,n!2Grs
21~p2q,n2v!

v1 id2rqvF
, ~7!

where G rs(p,n,q,v) is the vertex function of two-particle
lines and one interaction line. The Ward identity follows d
rectly from the particle and current conservation in ea
branch and spin~valid only for forward scattering! coupled
with linear dispersion relation. It can be derived by summ
the infinite series of vertex diagrams as shown in Fig.
Using this vertex expression, one can calculate the exac
reducible polarizability~consider the charge part only!

P0,r~q,v!52 i(
rs

E dp

2pE dn

2p
Grs~p,n!Grs~p2q,n2v!

3G rs~p,n,q,v!

5(
rs

E dp

2p

nrs~p2q!2nrs~p!

v1 id2rqvF

5
2q2vF /p

~v1 id!22~qvF!2
. ~8!

Comparing the Fermi-liquid RPA results with the LL resu
we find that they are identical if we only change the FL-R
parabolic dispersion to the linear one as in the Luttin
model. Therefore we obtain the striking result that the ir
ducible polarizability of the linear band dispersion model
exactly the same as the RPA result. In other words, ve
corrections to the irreducible polarizability vanish. This r
sult can also be verified by the topological argument given
Ref. 21, which shows that all the electron-hole loops c
necting with more than three interaction lines cancel o
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Note that the above result is independent of temperature,
to the particle number conservation in thep integral. When
the dispersion is linearized as in the LL mode
ImP0,r

RPA(q,v) itself becomes a delta function atv5qvF

rather than a square function, leading to the complete s
pression and the disappearance of the SPE mode av
5qvF . This makes this diagrammatic result consistent w
the Bosonization result, in which there is manifestly
single-particle eigenstate at all in the final spectrum. B
approaches predict the complete absence of an SPE mo
the LL theory.

IV. HUBBARD MODEL

Motivated by the long-standing SPE-feature puzzle d
cussed in the Introduction, it has been suggested13,8 that we
can interpret the ‘‘SPE’’ peak observed in the experimen
RRS spectra as the ‘‘singlet spin excitation.13’’ In other
words, the incident photon virtually flips the electron sp
and then restores its polarization after the scattering, leav
the electron spin unchanged. Unlike the triplet spin exc
tion, SDE, which manifests itself in the depolarized RR
spectra, the virtual spin-flip process of SSE may, in princip
contribute to the final spinless scattering matrix element
the polarized Raman scattering spectrum, so one could
pect that SSE should be very close to the SPE in ene
under the spin-independent Coulomb interaction. That
plains why one cannot simply separate these two~SSE and
SPE! whether in the experimental measurement or in
theoretical calculation. In the LL theory, there is no SPE, b
SSE is, in principle, allowed and may simulate the SPE
the FL-RPA theory. To investigate the role of SSE in mo
details we could use the 1D Hubbard model on a latti
which can be mapped to the exactly solvable Luttinger liq
model in the long-wavelength limit. Thus the 1D Hubba
model has no generic SPE properties, and could therefor
useful in the understanding of SSE properties. We there
study the SSE in the 1D Hubbard model, and investig
whether its spectral weight can be comparable to the CDE
observed in the experiments.

In this paper, we want to study the 1D single band Hu
bard model~HM! through the Bethe-ansatz equations and
Lanczos-Gagliano method, which is shown to be in excell

FIG. 5. Diagrammatic representation of the Ward identity for t
vertex functionG rs . The solid lines represent the single-partic
Green’s function while the wave lines represent the interaction.
3-5
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D. W. WANG AND S. DAS SARMA PHYSICAL REVIEW B65 035103
agreement with the exact diagonalization result. Althou
HM is a lattice model of short-ranged on-site interactio
unlike the realistic 1D QWR systems which are continuu
systems with long-ranged Coulomb interaction, we co
still use it as a valid model in qualitatively discussing t
problem of the polarized Raman scattering because all
interacting systems belong to the LL universality class a
generic issues may be addressed in any particular 1D mo
We first identify the holon excitation of the Hubbard mod
to be the CDE, and the triplet spinon to be the SDE in
usual RRS language, by comparing their dispersion relat
in the whole spectrum. We then further obtain the finite sp
tral weights of SSE in the charge-density spectrum and s
that the weight of singlet spin-density excitation is still rath
low in the HM andcannotproduce large spectral weights
the polarized RRS scattering spectrum as found in the
periment. Thus our HM results shows that the SPE pea
the polarized RRS experiments is unlikely to be explained
the 1D singlet spin excitation, at least within any nonre
nant theory which considers the elementary excitations o
in the conduction band.

A. Theory

The simple 1D single band Hubbard model,

H52t(
i ,s

~ci 11,s
† ci ,s1H.c.!1U(

i
ni↑ni↓ , ~9!

where ci ,s and ni ,s are, respectively, the fermion creatio
operator and the density operator for sitei and spins, has
been extensively studied.t and U are hopping energy an
on-site short range spin-dependent interaction following
usual notation in the literature.22–24 Note that the Hubbard
model is basically a model with a spin-dependent short-ra
~on-site! interactionU. It has generic LL properties in th
long-wavelength limit and for low-lying excitation energ
i.e., no single-particle behavior in the spectral function
Fermi wave vector. The explicitly spin-dependent interact
U in the HM, however, should make the spin singlet st
more enhanced in the spectrum, and easier to study. Am
the many accurate and useful methods to study the 1D H
we use the Bethe-ansatz method22,24 to obtain the ground
state and the low-lying excitation state dispersion spectra
is well known that the Bethe-ansatz wave functions are
particularly useful in calculating correlation functions, a
therefore we need an alternative method to obtain the s
tral weights of the elementary excitations. We calculate
charge-density and spin-density correlation functions, to
compared respectively with the polarized and depolarized
elastic light scattering spectra, by using the Lancz
Gagliano method.25–28This method~described and discusse
below! gives a simple but fast-convergent result for the c
relation functions in the lattice model. By comparing t
momentum-energy dispersion relations of these two differ
methods,~i.e., the Bethe-ansatz and the Lanczos-Gaglia
method! we can identify each important spectral peak o
tained by the Lanczos-Gagliano method to be a cer
Bethe-ansatz elementary excitation in the Hubbard mo
language~holon, triplet spin, or singlet spin excitations, fo
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example! and then estimate their relative weights for com
parison. Our results obtained by this technique are consis
with the quantum Monte Carlo calculations29 where appro-
priate.

1. Bethe-ansatz equations

It is well known that the 1D Hubbard model can be solv
exactly22,23 by the Bethe-ansatz method. The eigenva
equation of Eq.~9! is proved to be identical to solving th
coupled system of equations~under periodic boundary con
dition!

eik jL5 )
a51

M
sinkj2la1 iU /4

sinkj2la2 iU /4
, ~10!

)
j 51

N
la2sinkj1 iU /4

la2sinkj2 iU /4
52 )

b51

M
la2lb1 iU /2

la2lb2 iU /2
, ~11!

whereL(N) is the total number of sites~electrons! andM is
the number of down-spin electrons (M<N/2). The pseudo-
momentum$kj% and spin rapidities$la% are generally com-
plex variables to be solved and related to the physical st
of energyE and momentump by

E522t (
j 51

N

coskj , ~12!

and

p5(
j 51

N

kj . ~13!

If the kj ’s andla’s are all real, the identity of the phases
Eqs.~10! and ~11! can be obtained by taking the logarithm
Then we have the following well-known results:

Lkj52pI j12 (
a51

M

tan21S la2sinkj

U/4 D , ~14!

2(
j 51

N

tan21S la2sinkj

U/4 D52pJa12 (
b51

M

tan21S la2lb

U/2 D ,

~15!

where the quantum numbers$I j% are all distinct from each
other and are integers ifM is even and are half-odd intege
if M is odd, and are only defined inuI j u<L. Similarly, the set
$Ja% are all distinct and are integers ifN2M is odd and
half-odd integers ifN2M is even. The value of$Ja% is
restricted byuJau,(N2M11)/2. Generally, it is not hard to
use the Bethe-ansatz equations to solve large size system
the thermodynamic limit,L→`, one can find the equivalen
linear integral equations for the density ofk’s andl ’s on the
real axis.23,30,31But we will only focus here on the finite-siz
systems in order to compare the Bethe-ansatz results with
results of the Lanczos-Gagliano method, which is necessa
computationally restricted to small system sizes.

To solve these Bethe-ansatz equations, we first hav
define the proper quantum numbers$I j% and$Ja%, then solve
3-6
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ELEMENTARY ELECTRONIC EXCITATIONS IN ONE- . . . PHYSICAL REVIEW B 65 035103
Eqs. ~14! and ~15! to get kj ’s and la’s, and then get the
momentump and the energyE of that state specified by
those quantum numbers. Here we present the quantum n
ber structures of the ground state and two low-lying exci
state, the ‘‘4kF’’ singlet states, the ‘‘2kF’’ triplet states, and
the ‘‘2kF’’ singlet states as named by Schultz.14 The first two
havek’s andl ’s all real, while the last one has one pair
complexl ’s in Eqs.~10! and ~11!.

Ground state.It is easy to see that the ground state
nondegenerate only ifN is of the form 4m12 (m is an
integer!. In the following, we just study the nondegenera
case for simplicity. Considering the essential symmetr
one can write the ground-state quantum number satisfy
the above restrictions to be

$I j%5$2~N21!/2, . . . ,~N21!/2%,

$Ja%5$2~N/221!/2, . . . ,~N/221!/2%. ~16!

4kF singlet state (holon excitation).The first simplest ex-
cited states are obtained by removing one of the momen
quantum numbers,2(N21)/21 i 0, in $I j% and adding a
‘‘new’’ one at (N21)/21I 0 outside the ground-state se
quence. All other momentum quantum numbers and s
quantum numbers are kept the same as in the ground-
structure. Therefore the new sequence of$I j% is

$I j%5$2~N21!/2, . . . ,2~N21!/21 i 021,2~N21!/21 i 0

11, . . . ,~N21!/2,~N21!/21I 0%, ~17!

and the$Ja% is the same as the ground state in Eq.~16!.
Therefore there are two free parameters,i 0 and I 0, for this
type of excitations. In this paper, we use (i 0 ,I 0) to denote
this excitation state. According to Schultz,14 they are named
4kF singlet states due to their energy minimum atk54kF in
their dispersion spectrum. In the literature, these states
also called ‘‘particle-hole excitation’’ or ‘‘holon’’
excitation.23 In the rest of this paper, we will call them ‘‘ho
lon’’ excitations for simplicity.~This is related to the CDE o
our earlier sections.!

2kF triplet state (triplet spinon excitation).Next we con-
sider the excitations of theJ’s with all l ’s andk’s real. This
is possible only ifM,N/2. The simplest excitations of thi
type are obtained by consideringM5N/221. The total spin
of the system isS51, so we expect this excitation to b
related to a triplet spin excitation. The quantum numbers
these states are

$I j%5$2N/211, . . . ,2N/21 i 021,2N/21 i 0

11, . . . ,N/2,N/21I 0%,

J152N/41da1,1 ,

Ja5Ja21111da,a1
1da,a2

, ~18!

where a52, . . . ,M and 1<a1,a2<M12. Herea1 and
a2 are the free parameters in the spin quantum number,$Ja%,
and i 0 andI 0 are the two parameters in momentum quant
number$I j%. From Eqs.~12!–~15!, we can see thati 0 andI 0
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shift the total momentum and energy of the spectrum crea
by the spin excitation in$Ja%. In the following calculation,
we use (i 0 ,I 0 ,a1 ,a2) to denote these states in the spectru
These excitations are called 2kF triplet states because it
minimum energy is atk52kF . In the rest of this paper, we
will call them ‘‘triplet spinon’’ for simplicity. ~This is related
to the SDE of the earlier sections.!

2kF singlet state (singlet spinon excitation).The third
possible elementary excitations are from the complex so
tions of Bethe-ansatz equations, Eqs.~10! and~11!. Spin sin-
glet states (M5N/2 and thenS50) are obtained by having
one pair of the complex conjugate,l65lR6l I with all
otherk’s andl ’s real. The new set of Bethe-ansatz equatio
are obtained to be

Lkj52pI j12 (
aÞa1 ,a2

M

tan21S la2sinkj

U/4 D
12F tan21S lR2sinkj

U/42l I
D1tan21S lR2sinkj

U/41l I
D G ,

~19!

2(
j 51

N

tan21S la2sinkj

U/4 D52pJa12 (
bÞa1 ,a2

M

tan21S la2lb

U/2 D
12F tan21S la2lR

U/22l I
D

1tan21S la2lR

U/21l I
D G , ~20!

where j 51,2, . . . ,N and a51,2, . . . ,M , but aÞa1 , a2.
The two equations for the complexl6 are

1

2 (
j 51

N

lnS ~lR2sinkj !
21~U/41l I !

2

~lR2sinkj !
21~U/42l I !

2D
5

1

2 (
bÞa1 ,a2

M

lnS ~lR2lb!21~U/21l I !
2

~lR2lb!21~U/22l I !
2D

1 lnS U4l I1U

4l I2UU D , ~21!

(
j 51

N F tan21S lR2sinkj

U/41l I
D1tan21S lR2sinkj

U/42l I
D G

52pJ1 (
bÞa1 ,a2

M F tan21S lR2lb

U/21l I
D1tan21S lR2lb

U/22l I
D G ,
~22!

where

J5H integer H if ul I u.U/4, and N2M is even

or if ul I u,U/4, and N2M is odd

half odd integer otherwise.
~23!
3-7
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D. W. WANG AND S. DAS SARMA PHYSICAL REVIEW B65 035103
As for the quantum number,$I j% and $Ja%, in the singlet
states, we choose them to be the same as the ground
Eq. ~16!, except for the two free ‘‘holes’’ atJa1

and Ja2
,

whose related spin quantum numbers,la1
and la2

are re-

placed by the pair of complex conjugate,l65lR6l I .
Equations~19!–~22! are usually too complex to give a non
trivial solution because the usual numerical iteration meth
will converge to the triviall I50 solution. But one can sim
plify these equations by takingl I5U/4 and onekj satisfying
sinkj5lR, so that Eq.~21! could be neglected, and all th
terms containing tan21@(lR2sinkj)/(U/42l I)# in Eq. ~22!
contribute a phase6p. The phase numberJ is set to make
the total phase shift„including those from tan21@(lR

2sinkj)/(U/42l I)#… to be zero in the calculation.
The spin singlet excitations have a dispersion similar

the triplet ones. Here we could use (a1 ,a2) as the quantum
number to define these states. In the finite-size system
repulsive interactionU the singlet states have higher ener
than the triplet ones, but they will become degenerate
energy as we go to the thermodynamic limit (L→`, and
^n&5const). In the experiment, the spin triplet excitatio
~i.e., SDE! are observed in the depolarized RRS spec
where a net spin flip occurs, while the singlet states are
served in the polarized spectra, which involve no net s
flip.

As mentioned in the beginning of this section, the Beth
ansatz method does not, in general, provide the spe
weights for their solutions. Therefore the three element
excitations above may not be equally important from
experimental point of view, i.e., they may carry very diffe
ent spectral weights~and some may even be unobservable
the experimental spectra!. All we know from the Bethe-
ansatz solutions are the existence and the dispersion of t
excitations butnot their spectral weights. We also know th
these are allowed solutions of the HM just as the SPE is
allowed solution of the FL-RPA model~but not the LL
model!. Comparing the mode spectral weights calculated
Lanczos-Gagliano method we discuss next, we calculate
relative spectral weights of these solutions and then st
their interaction dependence.

2. Lanczos-Gagliano method

In this paper Lanczos-Gagliano method means the com
nation of two important techniques in the lattice model. T
standard Lanczos method is to construct anL3L matrix rep-
resentation for the tridiagonal Hamiltonian, like Eq.~9!, and
then directly diagonalize it to get the eigenvaluesEn and
eigenfunctionsFn , which could be used to do further calcu
lations, such as obtaining spectral weights. But since o
ground state energy and wave function are needed in ca
lating the correlation function by using Gagliano’s meth
~see below!, we use a simpler but more efficient way, th
modified Lanczos method, to calculate the ground-state
ergy and wave function. This method has been analyzed
discussed in detail in Refs. 25–28 and we refer the reade
the existing literature17,25–28 for details on the Lanczos
Gagliano method.
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B. Results and discussion

We study the 1D Hubbard chain with three different de
sities, ^n&5N/L51/3 for 6 electrons in 18 sites,^n&51/2
for 6 electrons in 12 sites, and̂n&55/6 for 10 electrons in
12 sites.~Note that the usual filling factor of the system
^n&/2 since our definition of density does not include spi!
The size of the Hubbard chain is dictated here entirely
computer memory restrictions in calculating the correlat
function via the Lanczos-Gagliano method. We keep
electron number to be 4m12 with m an integer in order to
have a nondegenerate and zero-momentum ground stat
der the periodic boundary condition. Throughout our calc
lations, we set the broadening factor to be 0.01t @wheret is
the nearest-neighbor hopping amplitude in Eq.~9!# and use
the modified Lanczos method to calculate the ground-s
energy iterationally until convergence to within less th
0.1% in the ground-state energy is reached. We also trun
the infinite continuous fraction at 25–27th order term
which gives us good convergent results in the calculation

In the following, we will first discuss the results related
the polarized spectrum, which involves no net spin-flip in t
system, by using the two methods mentioned above at a fi
interaction strength,U/t53. Then we consider the depola
ized spectrum under the same conditions. Finally we disc
their interactionU dependence by varyingU/t in our calcu-
lations. In the discussion below the terms ‘‘resonance’’
‘‘resonance peaks’’ refer to the Lanczos-Gagliano calcu
tions.

1. Polarized spectrum analysis

We compare the dispersion of the charge-density exc
tion with the dispersions of the 4kF singlet states~holon! and
the 2kF singlet states~singlet spinon! given by the solutions
of the Bethe-ansatz equations, because these two are the
lying elementary spinless (S50) excitations of the 1D Hub-
bard model and as such should correspond to the polar
spectrum. We will also study their relative spectral weigh
Both lower density (̂n&51/3) and higher density (^n&
55/6) results are shown together~Figs. 6–9! for further dis-
cussion.

In Fig. 6~a!, we show the spectral dispersion obtained
the poles of the imaginary part of the charge density co
lation function. The doping density iŝn&51/3 for 6 elec-
trons in 18 sites in the 1D Hubbard chain with period
boundary conditions. The center of each open diamond
resents the position of the pole, and its area is proportiona
the spectral weight of that excitation. In the same figure,
dispersions of the holon~star! and singlet spinon~open
square! excitations given by the solutions of Bethe-ansa
equations are also shown for comparison. Several feat
could be noted from Fig. 6:~i! the excitation peaks of the
charge-density correlation function have a linear dispers
in the long-wavelength limit (q!kF5p/6) and its slope
gives the velocity of charge density excitation of 1D Hu
bard model.~ii ! The resonance peaks form a wing up to t
large momentum region~i.e., low-energy excitations corre
spond to the low momentum and high ones to high mom
tum!, with a maximum energyv54t at q5p. ~iii ! The sizes
3-8
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ELEMENTARY ELECTRONIC EXCITATIONS IN ONE- . . . PHYSICAL REVIEW B 65 035103
of the diamonds, which represent their spectral weig
show that the peaks at higher energy generally have gre
spectral weights than the ones at lower energies at the s
momentum~i.e., spectral weights are greater for peaks
higher energies!. Therefore one could see by eye a sineli
curve at the upper edge of the resonance wing with a m
mum atv54t, and this observation is consistent with th
results from quantum Monte Carlo simulations on larg
system.29 ~iv! There are no excitation states for sing
spinons at smallq5p/9. This implies that the singlet spino
of the 1D Hubbard model is not allowed for momentu
smaller than 232p/L, where 2p/L is the momentum scale
of this finite-size~L! system. This follows from the fact tha
the singlet state must be excited by a pair of complex c
jugate l6 in Eqs. ~10! and ~11!, which is at least a two-
particle excitation, so that the minimum momentum requi
is 232p/L. ~v! One interesting feature is that there a
clearly two energy minima atq52kF5p/3 and q54kF
52p/3 in the spectrum. Comparing these resonance pe
with the solutions given by Bethe-ansatz equations, we
that the holon excitations cover almost exactly the same
gion including the energy minimum at 4kF except for the
lower-lying peaks around 2kF , where the singlet spinon jus
matches those peaks. In other words, we could reason
claim that the most dominant features of the resonance p

FIG. 6. ~a! Energy-momentum dispersion relation and~b! the
spectrum of charge-density correlation function for 6 electrons in
sites. The area of each diamond~square! in ~a! is proportional to the
spectral weight of each charge~spin! excitation peak. The number
above the holon and singlet spinon peaks in~b! are the quantum
numbers defined in Sec. IV A 1 from the Bethe-ansatz equation
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given by the charge-density correlation function arise from
combination of holon and singlet spinon excitations in t
1D Hubbard model. This result could not be trivially ob
tained either by solving Bethe-ansatz equations or by ca
lating the charge-density correlation function alone, as m
tioned in the introduction—one must combine the tw
techniques to come to this conclusion. Other spin sing
excitations given by the solutions of Bethe-ansatz equati
@for example, two pairs of complexl ’s in Eqs. ~10! and
~11!#, carry very small spectral weights because no ot
significant resonance peaks are found in this dispersion s
tra, except for some trivial ones. In the thermodynamic lim
we expect that only the 4kF holon and 2kF singlet spinon
will have finite spectral weights and could be interpreted
the ‘‘charge-density excitation’’ and ‘‘single-particle excita
tion’’ in the RRS spectra respectively when comparing w
the experiments4 as we mentioned in the earlier sections. W
discuss this issue further later in this paper.

In Fig. 6~b!, we show the imaginary part of the charg
density correlation function of the same system atq52p/9.
It shows that singlet spinons have a relatively small, b
non-negligible weight, compared with the weight of th
dominant holon excitations. Their relative spectral weig
ratio ~singlet spinon/holon! is less than 0.1. Similar result
are also obtained in the systems of 6 electrons in 12 s

8

.

FIG. 7. Same as Fig. 6, but for 10 electrons in 12 sites. One
see that the double occupancy of electrons will give higher-ene
excitations in this high-density system. Even the singlet spinon
citations span in a larger area in the whole momentum range in~a!,
their spectral weights are still smaller than the holons and solit
~double occupancy excitations!.
3-9
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D. W. WANG AND S. DAS SARMA PHYSICAL REVIEW B65 035103
^n&51/2, which are not shown in this paper.
In Fig. 7~a!, we show the dispersion of the resonant po

of the charge-density correlation function of 10 electrons
12 sites (̂n&55/6). Here the holon excitations form a mo
narrow wing than in the lower density system, but the ba
shape of the dominant curve is almost the same. Below
curve, the singlet spinon occupies almost the whole re
nance region. Since 4kF55p/3 in this high-density system
we cannot see the 4kF energy minimum in this figure~actu-
ally, the gap of this energy minimum is very large in th
finite system, but will go to zero in the thermodynam
limit 14!. But one could still see the energy minimum of th
singlet spinon at 2kF55p/6;0.833p in Fig. 7~a!. There is a
notable feature in these results at energies above the h

FIG. 8. ~a! Energy-momentum dispersion relation and~b! the
spectrum of the spin-correlation function for 6 electrons in 18 si

FIG. 9. Same as Fig. 8~a!, but for 10 electrons in 12 sites.
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excitations: there are some additional states, having an
ergy gap equal toU(53t) and a maximum energy greate
than 4t at q5p in this high-density situation. These stat
~solitons! must arise from the double occupancy of the ele
trons in the Hubbard model, which consequently expla
their high-energy status. The quantum Monte Carlo meth
to the best of our knowledge, does not provide any inform
tion about these high-energy double occupancy states a
same densityn55/6 in the literature.29 From the Bethe-
ansatz equations point of view, however, these states sh
be obtained by taking the complex momentumkj solutions in
Eqs.~10! and~11!,30 whether in the high- or the low-densit
system. Once again, we see the importance of studying
spectral weights of the Bethe-ansatz solutions by compa
them to the correlation function results so that one could
the most realistic and physically meaningful states. Just h
ing the solutions, without much idea about their spect
weights, is not useful in determining the experimental and
physical relevance of the particular excitations. Therefore
shown in Fig. 7~b!, the three most important contributions
the charge-density correlator arise from singlet spinon,
lon, and soliton excitations~double occupancy excitations!,
from lower energy to higher energy regime, respectively,
the 1D Hubbard chain. Their relative spectral weights sh
that the singlet spinon has the smallest weight, and it co
be shown that there areno gapless holon and singlet spino
excitations in the half filling (̂n&51) 1D Hubbard model
systems, where the soliton~double occupancy excitations!
and other higher energy states dominate the excitation s
trum.

2. Depolarized spectrum analysis

In Fig. 8~a!, we show the resonance dispersion spectr
of the spin-density correlation function,^ss&, of the low-
density system~6 electrons in 18 sites!. The triplet spinon
excitation spectrum given by the solutions of Bethe-ans
equations is also presented for comparison. Several feat
are found: ~i! in the long-wavelength limit, the resonan
poles have a linear dispersion, whose slope gives the velo
of the spin-density excitation. One could easily see that
velocity is always smaller than the velocity of the charg
density excitations at the same density. This is consis
with result of previous work.14 ~ii ! The resonance poles form
a wing up to the large momentum region (q;p), whose
maximum excitation energy is below 4t. ~iii ! Unlike the re-
sults for the charge-density correlation function in Fig. 8~a!,
the most dominant poles are located in the lower energy
of the resonance wing, which correspond to the triplet st
without any excitations in$I j%, and therefore is related to th
lowest energy ones in our calculation.~iv! The resonance
spectrum has an energy minimum at 2kF . Compared to the
triplet solutions of Bethe-ansatz equations, the triplet spin
excitation spectrum has only three peaks matching the r
nance poles of the largest spectral weight at their momen
values (q5p/9, 2p/9, and 3p/9!, and the other three matc
the poles of relatively muchweakerstates@not visible in Fig.
8~a!, but distinguishable in the absorption spectrum shown
Fig. 8~b!#. This result demonstrates that the spectral weig
of elementary excitations could be very different even if th

.
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ELEMENTARY ELECTRONIC EXCITATIONS IN ONE- . . . PHYSICAL REVIEW B 65 035103
result from the same type of the Bethe-ansatz solution. F
ure 9 shows the dispersion relation of the spin-density c
relator of the large density system (^n&55/6) and the corre-
sponding triplet spinon excitations by the Bethe-ans
solutions are also shown.

3. Interaction dependence

In this section, focusing on the lower density systemL
518 and N56) and a fixed momentum (k52p/9), we
study the mode dispersion and spectral weight of these e
tations in a range of finite interaction (U/t<10) to obtain the
interaction dependence of the excitation spectra. First,
study the polarized spectrum given by the imaginary par
the charge-density correlation function,^rr& @shown in Fig.
10~a!#. Then we compare the energy of the resonance pe
in the series of spectra with the Bethe-ansatz results@Fig.
10~b!#, and discuss the interaction dependence of the m
velocity @Fig. 10~c!#. Finally we discuss the interaction de
pendence of the spectral weight for each elementary ex
tion @Fig. 11#.

In Fig. 10~a!, there are basically three peaks in the typic
structure of the polarized spectrum, and we can identify th
as the singlet spinon, the second and the first holon excita
~from lower to higher energy! by explicitly comparing with
the energy given by the Bethe-ansatz solution in Fig. 6~a!.
Using the notation introduced in Sec. IV A 1, the sing
spinon is the state~2,3!, while the holon I and II states ar
~6,2! and ~5,1!, respectively. Several interesting features c
be found in Fig. 10~a!: ~i! in the noninteracting (U50) case,
there are only two equal weight poles, which could be u
derstood as the two single particle~electron and hole! exci-
tations around Fermi surface,k5kF . ~ii ! When finite inter-
action is turned on, there is an additional excitatio
According to the comparison of dispersion relations, both
new peak and the higher energy peak should be interpr
as holon excitations~called holon II and holon I, respec
tively, corresponding to different$I j% ’s!. ~iii ! The singlet
spinon excitation@shown in Fig. 10~a!# has a rapidly decreas
ing spectral weight with increasing interaction, and disa
pears totally asU/t.5.0.~iv! The two holon excitations shif
to higher energy asU increases, and maintain almost th
same spectral weight except one more peak appears asU/t
>8.0 @see Fig. 10~a!#. Above U/t58.0, the appearance o
the new small peak affects both the spectral weight and
citation energy of the holon II excitations@see Figs. 10~b!
and 11~a!#. There are basically two possible interpretatio
for this result. One is that this peak does not represent
excitations, but may be arising spuriously from the inac
racy of the finite truncated series or finite iteration used
the Lanczos-Gagliano method in the largeU range. Another
possible reason is that it may arise from the higher ene
excitation states of unknown origin, which are also obta
able from the Bethe-ansatz solutions, but whose streng
visible only when the interaction strength is large enou
We will not discuss this anomalous peak any further in t
paper since this falls outside the scope of our main inter

In Fig. 10~c!, we plot the excitation velocity, which is
defined to be
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FIG. 10. ~a! The calculated polarized spectra with various inte
action strengths for̂n&56/1851/3, atk52p/9, and~b! the exci-
tation energies of the three elementary exciations in variousU/t,
compared with the Bethe-ansatz results~solid lines!. ~c! The veloci-
ties of holon and singlet spinon with respect to the Fermi veloc
vF as a function ofU/t.
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v[
DE~q!

Dq U
q→01

, ~24!

as a function of interaction strength. We find that when
interaction is weak (U/t<1), the two ~holon and singlet
spinon! excitations are almost degenerate, while their re
tive spectral weights change a lot@see Fig. 11~a!# as a func-
tion of U/t. WhenU/t increases, the holon has greater ex
tation energy and hence velocity, but the velocity of t
singlet spinon decreases fast. This result holds even in
thermodynamic limit.

In Fig. 10~b!, we see more clearly that the energies of t
three elementary excitations are only weakly dependen
the interaction for smallU, but strongly dependent onU for
large U. In Fig. 11~b!, we have a logarithmic scale in th
spectral weight dependence with respect to the interactio
small U/t range (U/t,1.0). By calculating the slope o
these data, we find that the spectral weight of holon
Sholon I, is almost a constant in the smaller interaction ran
(U,0.5t), and then weakly decreases for higherU. How-

FIG. 11. The spectral weights of the three excitations in
polarized spectrum as a function of the interaction strengthU/t in
~a! linear scale fromU/t50 to U/t510, and~b! linear-log scale for
smallU (U/t<1.0). The momentumk52p/9 is the same as in Fig
6. The inset of~b! is the log-log plot for the holon II excitation. We
can see that the holon II excitation increases as a power law i
strength asU increases, showing a possible Luttinger liquid beha
ior in the weakly interacting system~see text!.
03510
e

-

-

he

e
n

in

I,
e

ever, the spectral weight of holon II has a stronger power-
behavior, Sholon II}U1.635. Thus the two holon excitations
differ a great deal in their interaction dependence of th
respective spectral weights.

In Fig. 12~a! we show the calculated depolarized spec
by taking the imaginary part of spin density correlation fun
tion, ^ss& for various interaction strengths. In the noninte
acting case, the spectrum is the same as the polarized o
Fig. 6~a! due to spin rotational symmetry. But with increa
ing interaction strength both triplet spinon peaks move
lower energy in contrast to the polarized spectra. Compa
with the Bethe-ansatz results in Fig. 12~b!, the lower/higher

e

its
-

FIG. 12. ~a! The calculated depolarized spectra with vario
interaction strengths of the low-density system,^n&56/1851/3, at
momentumk52p/9, and ~b! the excitation energies of the tw
elementary excitations~triplet spinon I and II! with respect to the
interaction strength,U/t, compared with the Bethe-ansatz resu
~solid lines!.
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ELEMENTARY ELECTRONIC EXCITATIONS IN ONE- . . . PHYSICAL REVIEW B 65 035103
energy peak, triplet spinon I/II, is the state denoted
~6,0,1,3!/~6,1,2,3!. The excitation energy of the triplet spino
we obtain by the Lanczos-Gagliano method agrees well w
the Bethe-ansatz result in general except that the energ
the triplet spinon II does not seem to agree well when
interaction is larger thanU/t53. From the result in Fig.
12~a!, we can see that this may be due to the appearanc
another excitation peak in the Lanczos-Gagliano spec
which is not represented in our Bethe-ansatz solutions. Ba
on these results we conclude that the triplet spinon exc
tions are likely to be the dominant contributions in the dep
larized spectra. In Fig. 13, we show the interaction dep
dence of the spectral weights of the two triplet spin
excitations. The triplet spinon I~II ! has a maximum~mini-
mum! spectral weight at some finite interaction,U/t53;4,
and the interaction dependence of the spectral weight is n
trivial. This result demonstrates the importance of the in
mediate interaction strength of the 1D Hubbard model.

C. Discussion

We systematically study the elementary excitations of
Hubbard model by combining the techniques of the ex
Bethe-ansatz equations for the mode dispersion and
Lanczos-Gagliano method based spectral weight calcula
of the correlation functions. Three types of elementary ex
tations, holon, singlet spinon, and triplet spinon excitatio
are studied at zero temperature and different densities^n&
55/6, 1/2 and 1/3! and different interaction strengthU. We
first compare the energy-momentum dispersion relation
these excitations obtained by both methods and then s
the mode spectral weights in different situations. The co
parison between Bethe-ansatz solutions and resonance p
of the Lanczos-Gagliano correlation function gives us so
important results:~i! the holon and the singlet spinon excit
tion states show up together in the charge-density correla
spectra. Holon states have higher energy with an ene
minimum atk54kF while the singlet spinons lie in the lowe
energy region with an energy minimum atk52kF . There are
no other states of prominent spectral weights except
gapped double occupancy~soliton! states near half filling.

FIG. 13. The spectral weights of the triplet spinon excitations
a function of interactionU/t in linear scale fromU/t50 to U/t
510. We consider the same system and momentum as in Fig.
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This result connects the theoretical calculation of the
Hubbard model with observable physical quantities —
particular, these are the only two modes which are likely
show up in the polarized Raman-scattering experiment pr
ing the charge-density excitation spectra. Another impli
tion of this result is that one can interpret the Bethe-ans
quantum numbers,$I j% and $Ja%, as the ones of collective
excitations. But our spectral weight analysis shows that m
of the Bethe ansatz solutions for the 1D Hubbard chain
not have any observable contributions to the real phys
quantities because they carry essentially no spectral weig
~ii ! The excitation holon II has a power-law behavior in
spectral weight with respect to the interaction strength in
small U/t region, while the holon I has almost interactio
independent spectral weight~here the holon I/II could be
generalized to represent the 4kF singlet excitations having
holes in the edge/middle of the charge quantum num
$I j%). An interesting problem for further research is to obta
an analytic formula for the exponent of the holon II excit
tion. This will relate to the small interaction expansion
Bethe-ansatz equations and wave functions, which have
yet been explored much in the literature. When the inter
tion strength increases, on the other hand, the spe
weights of these two holons become equal as shown in
10~a!. ~iii ! As for the singlet spinons, we find that their spe
tral weights decrease to zero very fast~exponentially! as U
increases. This could be understood from the fact that
on-site repulsive interactionU prevents the formation of the
symmetric electron orbital wave functions, which must a
company the antisymmetric spin singlet wave function, th
suppressing the singlet spectral weight for largeU. ~iv! From
the imaginary part of the spin-density correlation functio
we find that the triplet spinon is the only low-energy sp
excitation in the long-wavelength limit. There isno other
excitation of important spectral weights in this region.~v!
The spectral weight study shows that among many trip
spinon excitation states, only those with some some spe
quantum numbers could possibly have relatively grea
weights at a given momentum@see Fig. 8~a! and the text
related to that# for finite interaction strengthU/t. Others
have very small or trivial weights, which are not physica
significant. ~vi! Finally the interaction dependence of th
spectral weights of the triplet spinon I and II differs ve
much in the intermediate interaction range, but becom
similar in magnitude in both the weakly interacting and t
strongly interacting situations. This shows the subtle com
cations in interpreting various excitation modes in the
Hubbard model for intermediate interaction strength~say
U/t;3). Further research is needed to provide a more co
plete understanding of this intermediate interacti
region, and our results should be considered a prelimin
investigation.

V. CONCLUSION

In summary, we systematically calculate the charg
density ~polarized spectra! and the spin-density correlatio
~depolarized spectra! functions of one-dimensional system
in three different models: Fermi liquid model, Luttinger liq

s

2.
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uid model, and Hubbard model. In the polarized spectra,
find that the FL model shows a strong collective char
density excitation at plasmon energy and a relatively w
single-particle excitation atv5qvF , while the LL model
shows one bosonic~plasmon/CDE! excitation only. Compar-
ing the plasmon excitation energy of FL model and t
bosonic excitation of LL model we find these two excitatio
are identical, and the small SPE peak in FL model ari
from the finite curvature effect of electron energy dispers
at the Fermi point. In the Hubbard model, however, two e
citations, holons and singlet spinons, show up together in
polarized spectra. We show that the holon excitations
actually the CDE in FL model or the bosonic excitation
LL model, while the singlet spinons in the HM arise from th
spin degree of freedom and finite dispersion curvature
Fermi point. If we compare the spectral weights of the low
energy excitations~SPE of FL model/no peak in LL mode
singlet spinons in Hubbard model! and the weights of the
higher energy excitations~CDE in FL model/boson peak in
LL model/holons in Hubbard model!, we find that the higher
energy excitations always have~much! larger spectral weigh
than the lower energy ones in all models. This shows that
equal weight two-peak structure observed in t
experiments4 could not be explained by thenonresonantRa-
is,

n

an

s
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man scattering mechanism, no matter how one interprets
lower energy excitations to be SPE or SSE. Recent theo
cal work7–9 on resonantRaman scattering spectroscopy i
dicates that the low-energy SPE feature may be a pu
band-structure effect arising from the participation of the v
lence band in the resonant scattering process. This also
plains why this anomalous peak shows up in all dimensi
in experiments and not just in 1D. In the depolarized spec
however, only one spin excitation~the SDE or the spin triplet
excitation! is observed in these three models. The vertex c
rection of the FL model will in general reduce the SDE e
ergy compared with the SPE energy, and separate the
from the SPE. In the intermediate interaction region, the t
triplet spinons in the Hubbard model have very differe
spectral weight behavior, showing very interesting inter
tion effects which need to be studied in more details in
future.
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