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Where is the Luttinger Liquid in One-Dimensional Semiconductor Quantum Wire Structures?
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We present the theoretical basis for analyzing resonant Raman scattering experiments in one-
dimensional systems described by the Luttinger-liquid fixed point. We make experimentally testable
predictions for distinguishing Luttinger liquids from the Fermi liquid and argue that presently available
quantum wire systems are not in the regime where Luttinger-liquid effects are important.
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It is theoretically well established [1-3] that a one-
dimensional interacting electron system (1DES) is not a
Fermi liquid (FL). Unlike a Fermi liquid, the interacting
1DES has neither sharp fermionic quasiparticle excitations
nor a discontinuity in the electron momentum distribution
function. The elementary excitations are charge e, spin
zero bosons and spin 1/2 charge 0 “semions” (fractional
statistics objects), and the fermion is a composite of these.
Interacting 1DES have been generically termed Luttinger
liquids (LL) [2] and have been the subject of extensive
theoretical study over the last 40 years and particularly
over the last decade. Despite the intense theoretical inter-
est, there have been few convincing experimental demon-
strations of the predicted LL behavior in real 1DES. The
power-law density of states observed in tunneling into
edges of quantized Hall systems [4] have been interpreted
in terms of the theoretically expected “chiral Luttinger liq-
uid” behavior of edge states. The origin of the differences
between the observed and expected exponents is presently
an area of active inquiry. Photoemission experiments on
Mott insulating oxides have been interpreted in terms of
the “holon” and “spinon” excitations of a charged Luttinger
liquid [5].

A 1DES which is of particular interest both for funda-
mental physics and for technology is the system formed
in GaAs-based semiconductor quantum wire (QWR) struc-
tures. Modern materials growth and fabrication techniques
have produced nearly ideal 1DES in which the electron
may move freely only along the length of the wire. The
transverse motion is quantized with the quantum 1D sub-
bands separated by several meV. It is possible to have low
enough carrier densities so that at low temperatures only
the lowest 1D subband is occupied by electrons. Such
GaAs QWR based 1DES should be ideal systems for the
study of interacting electrons in one dimension because
they are free from complications arising from band struc-
ture, lattice effects, and crossovers to three-dimensional
behavior which often make interpretations of experimental
data difficult in more traditional 1DES based on organic
compounds.

It is surprising, therefore, that no definitive LL behavior
has been reported in GaAs QWR systems, and, in fact, the

4570 0031-9007/00/85(21)/4570(4)$15.00

1D Fermi gas/liquid model seems to “work™ operationally
very well in describing and explaining the observed 1DES
experimental properties in GaAs QWR [6,7]. Part of the
reason for the apparent absence of the expected LL behav-
ior is undoubtedly the fact that in weakly interacting 1DES,
at finite temperatures and in the presence of impurity scat-
tering, the actual quantitative difference between a LL and
a FL is not large [7], although the conceptual difference
between the two is huge. A more fundamental issue is that
the differences between a Luttinger liquid and a Fermi lig-
uid are most obvious in the one-electron spectrum, while
the difference in particle-hole properties are much less pro-
nounced. This perhaps accounts for the fact that one of
the most important probes of QWR structures, resonant
inelastic light scattering or Raman scattering spectroscopy
(RRS) [6,8], which probes the particle-hole spectrum, has
not yet observed any definitive indications of LL behavior
in QWR systems.

In RRS experiments, light is absorbed at one frequency
and reemitted at another, creating one or more particle-hole
pairs. In the so-called polarized geometry with the incident
and outgoing photons having the same polarization (so that
no spin is transferred to the QWR), RRS experiments in
GaAs QWRs consistently [6,8] show two peaks which in-
deed look qualitatively very similar [9] to the spectra for
the corresponding 2D and 3D systems. In these higher
dimensional systems, the two peaks have a clear and gen-
erally accepted Fermi liquid interpretation [9]. The higher
energy peak is associated with the plasmon or charge den-
sity excitation (CDE), a collective density excitation of the
electron gas, and the lower energy spectral peak is associ-
ated with incoherent particle-hole pair excitations (SPE).
In the QWR materials, the lower energy peak occurs at an
(approximate) excitation energy of » ~ qup, where ¢ is
the excitation momentum and v is the 1D Fermi velocity
obtained from the band structure of the QWR. An inter-
pretation of the lower peak as an SPE contribution seems
therefore natural [9]. However, there is a strong theoreti-
cal objection to this interpretation: in a one-dimensional
system there is asymptotic spin-charge separation; in the
long-wavelength, low temperature limit, the charge excita-
tions live at the plasmon frequency, and cannot contribute
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to excitations at the SPE energy. The signal observed in
this g, v range must be due to the chargeless spin exci-
tations of the LL; in particular, it is possible to combine
two S = 1/2 excitations into a S = 0 object, creation of
which is allowed by the Raman selection rules, as first
noted by Schulz [10]. Irrelevant operators arising from
band curvature lead to a coupling, which vanishes in the
long-wavelength limit, between the S = 1/2 excitations
and the charge degrees of freedom, but this effect causes
negligible corrections to our results (or those of other
workers [10,11]).

Sassetti and Kramer (SK) presented a qualitative theory
of this effect [11]. They showed that although the leading
contribution to the RRS matrix element corresponds to
coupling the light to the electron density operator, there
is a subleading term (which becomes more important near
resonance) which may be interpreted as a coupling of light
to the energy density fluctuations of the electrons in the
QWR. These have a contribution from the spin excitations,
which qualitatively explains the data. The SK theory did
not calculate the spectral weights of the RRS peaks, and
breaks down too close to resonance. Most importantly, the
SK calculation is logically inconsistent, because it uses an
expression for the RRS matrix element which is correct
only if the conduction band is a FL not a LL.. Thus SK
uses FL matrix elements but LL excitations.

In this paper we present an essentially complete treat-
ment of RRS in a one-dimensional electron gas. We obtain
a precise expression for the energy transferred to the QWR
in a RRS experiment, valid at all values of the difference of
the energy from resonance, and evaluate it quantitatively
in several experimentally relevant limits. We show which
features of the data contain information about the LL expo-
nents, obtain expressions for the relative amplitudes of the
SPE and CDE peaks, determine line shapes, and discuss
the LL to FL crossover. Most importantly, we derive the
correct RRS matrix element, and show how it is affected
by LL correlations.

Resonant Raman scattering is a two-photon process in
which a photon is absorbed, transferring an electron from
the valence (V) band to the conduction (c¢) band and a
photon is emitted, transferring an electron from the con-
duction band back to the valence band. We assume that
the valence band is initially filled, and assume there is
no excitonic interaction between conduction and valence
band states. The excited valence hole is then described by
a single-particle Hamiltonian, which we write as Hy (note
this need not have quantization of transverse momentum),
while the conduction band is described by some interacting
Hamiltonian which we denote H; ;. We denote the photon
absorption and emission by Pj;, respectively. The RRS
process is described by the following Hamiltonian:

H=Hv+HLL+£’1+ﬁ2, (1)

where the photon-in (P;) and photon-out (P;) terms are

Py = @ty (D) + He ()
pP,S

Py = @20yt (Dcp-gpt) + He ()
)2

with ¢ and v the annihilation operators for electrons in con-
duction and valence band states, respectively. Note that the
operator v; - creates an eigenstate of Hy with energy E, v
while the ¢} ».o operators do not create eigenstates of Hp .
The absorbed (emitted) photon energy and momentum are
set ) = »/2 and *q/2, respectively.

We now use the standard methods of time-dependent
perturbation theory to calculate the amplitude, a,(tg), for
the system at some time #( to be in some excited state |n) of
QWR, but with no holes in the valence band. We assume
the system is in its ground state at + = 0. Our neglect of
any excitonic interaction between conduction and valence
band simplifies the calculation, and we obtain

1 . Ty . A
ZZ/dRe*'qu dT """ (n|0,s(R, T)[0)
r,s 0
4)

an(IO) =

with
~ T
0,(R,T) = fdxf dt ¢p(x,)ps(R + x/2,T + t/2)
0
X i (R = x/2,T = 1/2), 5)

where r and s are band and spin indices (*1), and
(]’)()C t) _ ezﬂtzez(Evt px (6)

Equations (4) and (5) are our fundamental new results:
they show that the RRS process acts to create a particle-
hole pair at a spatial separation x and temporal sepa-
ration . These are determined by the average photon
frequency () and the valence-band properties encoded in
E]‘,/. Further, if interactions are present in the conduction
band, the states created by ¢ and by i are not eigenstates
of H;; and therefore the matrix element is itself modified
by interactions. SK [10] and also [9] considered a matrix
element with # = 0 (but with x dependence) and neglected
the renormalization of the matrix element.

Equations (4) and (5) may be substantially simplified
in the limit of greatest physical interest. We linearize the
valence-band energy about the conduction band Fermi mo-
mentum, writing EVY = —A — v"(rp — pr) for branch
r and define wg = ) — A as the photon frequency with
respect to the resonance energy, A. The p integral gives
8(x + v"t). Finally we write the conduction band opera-
tors in terms of the bosons which create eigenstates of Hyy,
and normal order in the boson basis, obtaining

~ T
0,s(R,T) = Lf dte'*' G (—rvVt,1)
0

: V. : V.
:et(I),.W(R, rvVe;T,t) . etil),w(R, rvVe;T,t) ) (7)

where
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@, R x:T, 1) =2 e P2 | T 1 _inhg, sin[ p(rx + v,1)/2][bT, ePRTUT) 4 He]
P L P p P rp
V4

p>0

+ coshf, sin[ p(rx — v,1)/2] [b;rpe_i”(rR_”ﬂT) + Hec.J},

D, (R,x;T, 1) = 2s Z eifp/z‘/plL{sin[p(rx — vit)/2] [a:rpef"l’(’Rf";T) + Hec.]}.

p>0

Here b* and o™ create charge and spin excitations, re-
spectively, and v, = vi-e 2% is the plasmon velocity,
where the exponent ¢ 2% = \/1 + 2g /7 v} is defined for
the short-ranged interaction, g. G¢(—rv"t,1t) is the ex-
act conduction band Green’s function at spatial separa-
tion —rv"¢t, and temporal separation . We have assumed
that the interactions are negligible in the spin sector and
therefore the spin excitation velocity is just the Fermi ve-
locity. As long as v", the valence-band velocity at the
conduction band pp is different from the spin and charge
velocities of Luttinger liquid, G¢ is a decaying function
of . In the noninteracting case, G¢ ~ 1/r; interaction
leads to a faster decay: G¢ ~ 1/t'7® with the LL expo-
nent o = sinh26’p > 0 for short-ranged interactions; G°
decays faster with the physically relevant long-ranged in-
teractions. This faster decay of G° is the mathematical
expression of the renormalization of the RRS vertex by
the interactions which produce the Luttinger liquid behav-
ior. As we will now show, it has important consequences
for various aspects of the RRS spectra, and, in particular,
for the dependence of the CDE and SPE energies on the
difference of the average photon energy from resonance.

We defer to a subsequent paper a full evaluation of
the RRS correlation function, which is computationally
demanding and not very illuminating, and present here
the results of expanding Eq. (7) in terms of boson opera-
tors. The essential point is that if the combination of
e!r'G¢(—rvVt,t) decays rapidly as ¢ increases (large wg,
i.e., off-resonance, or large «, i.e., strong interaction), then
the ¢ integral is dominated by small times and an expres-
sion in power of bosons is rapidly convergent. We will
show below that the first order term, one-boson result,
gives the main contribution to CDE spectrum and domi-
nates the whole off-resonance spectrum and the second
order term, two-boson (spinon) result, gives the peak at
SPE energy near resonance, but it still has relatively small
weight as compared to the first order CDE.

Expanding the exponentials, keeping only the one-boson
term and integrating explicitly, gives the one-boson transi-
tion rate as a delta function at » = qv, with the spectral
weight (a < 1)

2

b}

Wi = 2LT? (—a) ‘(a)R — a)q)“ 3 (a)R + wq>a
1 qu; Ey Ey

(10)
where w, = qv,/2, neglecting v for simplicity. Ey is

the energy scale depending on the interaction range and
roughly of the order of Fermi energy, E. For w, < |wgl,
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Wi = |wgl|>* 2, while for wg = 0, W; = sin’(7wa/2).
Thus LL effects enter the CDE portion (one boson) of the
spectrum in two ways (for short-ranged interaction): first,
far from resonance, it changes the frequency dependence
of spectral weight from wg 2, the noninteracting result, to
wg 212 (note that all other higher order bosonic contri-
bution decays much faster; this confirms the validity of
the bosonic expansion we mentioned above). Second, on
resonance (wg = 0) it changes the value to be nonzero due
to finite interaction strength.

To second order, two new effects appear. In the density
spectrum, branch mixing processes lead to a continuum
absorption beginning at the CDE threshold, » = qv,. In
addition, an S = 0 combination of spin excitations may
be excited via two spinons (o o, o g ) (note that there is no
first order contribution in spin channel due to the selection
rule of RRS in the polarized spectroscopy), and gives the
so-called SPE mode at v = qup.

In Fig. 1, we show the spectrum from one and two
bosons for different resonance energy. One sees that (i) the
overall spectral weights decay very fast off resonance,
and (i) the SPE peak is generated at w ~ 0.2Ef by the
two-boson contribution near resonance. But as compared
with the CDE peak at plasmon energy (about 0.57Ef)
the SPE peak is still very small. This striking result
arises from the fact that the contribution of one spin bo-
son in the first order is forbidden by the specific selec-
tion rule of polarization in depolarized RRS spectroscopy.
(iii) At the higher energy side above the CDE peak, there
is some continuum structure which is not shown in the
range of Fig. 1. This continuum is from the interac-
tion between different branches of charge bosons, and
is not interesting because it goes to zero near the plas-
mon energy and its higher energy behavior is off the ex-
perimentally measurable region. (iv) When including three
or higher order boson contribution (not shown in this pa-
per), we will see the mixture of charge boson and spin
boson in a form like (oo p, poo), which will appear at
the energy between qvj and qv,, plasmon energy, as a
continuum structure. A detailed analysis shows that this
is relatively small and has no special structure compared
to the first two order result. While Fig. 1 is for a spe-
cific value of @ (= 0.3) we show in Fig. 2 the calcu-
lated charge boson and spin boson RRS spectral weights
at resonance and away from resonance. In general, the
LL theory predicts much smaller spectral weight for the
lower energy SPE mode than the FL theory [9] (which ne-
glected matrix element renormalization) at resonance. This
is particularly true since our best estimate for the Luttinger
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o FIG. 2. Spectral weights for the low energy (solid curve) and
the high energy (dashed) RRS peaks in the LL theory plotted
as a function of the Luttinger exponent a: wg = 0 (main);
0.1 (inset). When |wg| larger than 0.1 the low energy (“SPE”)

200 weights are always much smaller than the high energy (CDE)
weights over the whole range of «.
-0.5
X0.1
""""""""""""""""""" In conclusion, we provide the correct LL theory for
oL v b v b L the RRS spectra calculation, and obtain some meaningful
0.0 0.2 0.4 0.6 0.8 and interesting results to study the possible origin of LL
Raman Shift, v/E; features in the RRS spectra of 1D QWR systems. We also
FIG. 1. Calculated polarized RRS spectra for various reso-  develop a useful bosonic expansion method to study the

nance condition, wg. One- and two-boson contributions have
been plotted separately in order to show their relative contribu-
tions (see text). A finite broadening y has been used to depict the
results. Note that the overall spectral weights decrease dramati-
cally off-resonance, as indicated by the individual scale factors
on the right side of each plot.

exponent of the experimental system [6] (obtained from the
CDE energy dispersion) is o ~ 0.4.

As compared with the experimental result, which shows
possible comparable spectral weight of SPE with CDE [6],
we find that the LL theory result induced by resonance
effects does not explain the experimental results quantita-
tively, even though we could recover the SPE peak through
the coupling of two spinons in LL [11]. The perturbative
results presented here are confirmed by a nonperturbative
spectral weight analysis along similar lines to that leading
to Eq. (15) of Ref. [10] and will be presented in a future
paper. Therefore, in contrast to Ref. [10,11], we believe
that the existing experimental results [6] are not proof of
LL behavior but are in the high energy crossover regime
where, in fact, a FL. description may be more appropri-
ate for the RRS data than the LL description which is an
asymptotic low energy description. This explains the spec-
tacular quantitative success of the FL. RRS theory devel-
oped in Ref. [9].

two-particle correlation function. Finally, we find that the
LL theory cannot quantitatively explain the experimental
data [6] most likely because the RRS experiments are not
in the asymptotic low energy LL regime.
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